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Introduction

Zero-field splitting (ZFS) is a concept that is commonly used to indicate the loss
of the degeneracy of the spin components of a spin-orbit free (SOF) state in the
absence of an external magnetic field. This picture of ZFS is based on the separation
of SOF and spin-dependent effects such as spin-orbit coupling (SOC). With this
viewpoint, ZFS between the spin components of S > 1=2 SOF states can be
observed in mononuclear complexes (i.e., complexes with one transition metal (TM)
center), when (i) the “crystal” field felt by the TM ion is anisotropic (i.e., does not
correspond to a spherical or cubic symmetry) and (ii) when SOC is sufficiently
large [56]. Spin-spin coupling (SSC) is also at play [55], but usually to a lesser
extent. ZFS can in principle occur in any type of systems; however, it is commonly
associated with an orbitally nondegenerate ground SOF state. This chapter focuses
on TM complexes and more particularly the 3d ones. Mononuclear and binuclear
(i.e., with two TM centers) complexes will be considered to introduce the main
features of single-ion and molecular or intersite anisotropies.

Although ZFS is a concept that has been known for almost a century, it has trig-
gered new investigations in the last 20 years, among which theoretical studies play
a key role. One of the reasons for this revival is the discovery of the single-molecule
magnet (SMM) behavior [26], which was first evidenced in the so-called Mn12
molecule [13]. In this system, the low-temperature magnetic behavior is interpreted
as coming from the splitting of the spin components of the S D 10 SOF ground
state. The slow relaxation of the magnetization from the MS D �10 to MS D 10

components and vice versa is observable at reasonable experimental timescales.
The relaxation occurs via different mechanisms, such as thermal activation, direct
tunneling, or thermally assisted tunneling. More information concerning SMMs can
be, for instance, found in the nice review of Gatteschi and Sessoli [26]. Let us
just recall that in order to design higher-temperature SMMs, various strategies have
been attempted, as, for instance, enlarging the number of TM centers or enlarging
the single-ion anisotropies. More particularly for the latter strategy, it became
clear that more extensive studies were necessary to understand the properties of
“exotic” coordination spheres with pentacoordinated or heptacoordinated metal
centers [16, 68, 75, 76] or even low-coordinated cases [7, 89]. Moreover, the search
for magneto-structural correlations from ab initio calculations and crystal-field
models appeared necessary to eventually guide the synthesis of new coordination
complexes, as highlighted by Telser in 2006 [83].

ZFS also plays an important role in the magnetic properties of condensed matter,
as, for instance, ionic solids. In these systems, TM centers may be the subjects of
local and intersite anisotropies. Low-temperature magnetic properties of extended
systems are at least partly driven by the microscopic interactions that lead to ZFS.
One may quote magnetic multiferroics [23], for which magnetic and, for instance,
electric transitions are coupled, meaning that one can in principle influence the
magnetism of the material by the application of an external electric field or the
electric polarization by a magnetic field. One common way of tackling the properties
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of solids is to treat infinite systems by applying periodic boundary conditions
(PBCs), i.e., neglecting edge effects and assuming an ideally ordered arrangement
of the atoms. However, for reasons that will be discussed later in this chapter, it
is practically impossible to accurately compute ZFS when PBCs are considered.
Another approach, which is perfectly suited for the computation of local effects
in ionic solids, consists of using an embedded cluster to model the material, as
was done by Pradipto et al. to study cupric oxide [67] and Maurice et al. for
LiCu2O2 [52]. The interested reader may consult more literature concerning this
approach ([33, 34] and references therein), but we already stress that the methods
and conclusions that are given in this chapter are directly applicable to solids
provided that an embedded cluster approach is followed.

ZFS is often described in terms of model Hamiltonians, which have been
(almost) always introduced phenomenologically. Such models are typically spin
Hamiltonians, since by definition ZFS applies to systems for which the ground
orbital configuration is separated in energy from the others, and hence, the effective
description of the lowest-lying states can be restricted to the spin variables. For
mononuclear complexes, these Hamiltonians only consider the spin anisotropy of
the magnetic center. For polynuclear complexes, two main types of models are
widely used, namely, the giant-spin and the multispin models. Both types will be
discussed here for binuclear systems to keep the discussion as clear as possible.

This chapter aims at (i) making a bridge between ab initio calculations and
model Hamiltonians to validate phenomenological Hamiltonians, (ii) establishing
magneto-structural correlations, and (iii) demonstrating that magneto-structural
correlations can also be understood in terms of crystal-field models. Therefore, in
principle, one can bridge ab initio calculations, model Hamiltonians, and crystal-
field models to get a full and intuitive picture of the ZFS in TM complexes. The
chapter is organized as follows; first, we describe the ab initio methodologies that are
sufficiently accurate to compute ZFS, as well as the effective Hamiltonian theory;
second, we discuss the relevance of standard and improved model Hamiltonians that
effectively describe the ZFS in mononuclear and binuclear complexes; third, we
evaluate magneto-structural correlations, either derived from ab initio calculations
performed on model complexes or analyzed within crystal-field model; finally, we
conclude on the overall progress made in the last two decades and also give some
perspectives.

Ab Initio Calculations and Effective Hamiltonians

In this part, we describe a common strategy to introduce relativistic effects in the
calculation of ZFS, the typical way to introduce electron correlation in contracted
spin-orbit configuration interaction (c-SOCI) and a way to bridge the resulting spin-
orbit wave functions to model Hamiltonians to (i) assess the validity of model
Hamiltonians and (ii) extract the model parameter values if appropriate. Apart from
the here-discussed approach, other methods have been developed to compute ZFS
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and extract the model parameter values [6,15,25,61–63,66,78], but these are out of
the scope of this chapter.

From the Dirac Equation to Contracted Spin-Orbit Configuration
Interaction

The time-independent Dirac equation may be written as:

bH D
�

c Op Ǫ Cmec
2 Ǒ C OV

�

 D E 

where c is the speed of light, Op is the momentum operator, Ǫ and Ǒ are the Dirac
4 � 4 matrices, OV is the one-electron external potential, and  is a four-component
(4c) wave function. The resolution of the Dirac equation leads to two different types
of solutions; the upper energy eigenfunctions are usually referred to as the “large”
components, and the lower energy ones are known as the “small” components.
Since the large components tend to standard spin orbitals in the nonrelativistic limit,
these may also be considered as “essentially electronic” solutions. Although the
introduction of relativistic effects is in principle more natural in 4c frameworks,
much effort has been devoted in the last decades to reduce the complexity and derive
accurate two-component (2c) models.

Various transformations/approximations have been implemented in standard
codes, among which we quote the Douglas-Kroll (DK) transformation-based expan-
sions [20, 31, 36] and the zeroth-order regular approximation (ZORA) approach
[86, 87]. More recently, exact 2c formalisms (X2C) have been proposed [35]. Since
many investigations of ZFS in TM complexes make use of the DK transformation,
we will here describe briefly how to reach c-SOCI formalisms after this transfor-
mation, although c-SOCI schemes may also be derived from other reference 2c
Hamiltonians.

The DK transformation can in principle lead to the exact energies of the
Dirac Hamiltonian if one considers an infinite-order expansion of the one-electron
external potential ( OV /. In practice, the expansion is of course limited to finite
order; in most cases, the expansion only contains second-order terms. After the
sign correction by Jansen and Hess in the original derivation of the transformation
[36], the second-order (and higher) DK expansions are commonly referred to as
the Douglas-Kroll-Hess (DKHn) Hamiltonians, where n is the expansion order.
Another approximation, called the no-pair transformation, can be then introduced, in
which the one-electron kinetic Hamiltonian matrix is diagonalized within a (finite)
basis set to form a conventional one-electron basis. Although one can in principle
use transformed one-electron and two-electron interactions, a one-component (1c)
pseudo-relativistic Hamiltonian can be used in scalar relativistic calculations if only
the spin-independent one-electron interactions are transformed [72], which means
that nonrelativistic two-electron interactions are formally considered. A standard
approximation consists of introducing the SOC after a nonrelativistic or scalar
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relativistic calculation. Assuming that a set of scalar relativistic reference states
has been built in the first step, a c-SOCI calculation consists of diagonalizing
bH D Eel C bH SOC within the basis of the spin components of these reference SOF
states, in which Eel are SOF electronic energies and bH SOC is an appropriate SOC
Hamiltonian. More details concerning the choice of the SOF electronic energies will
be given in the next section. Let us just mention that it is common practice nowadays
to use electronic energies coming from a higher level of theory than the one that
is used to compute the multireference wave functions. So in addition to using the
reference wave functions for the off-diagonal SOC matrix elements of bH , one
can “dress” the diagonal elements of a c-SOCI matrix with higher-level electronic
energies. Such an approach was proposed by [82] and also Llusar et al. [42].

Due to the local character of the spin-orbit operator, one may neglect interatomic
SOCs. Expressions for the atomic SOC Hamiltonian that include one-electron and
two-electron interactions adapted to the no-pair DKH2 Hamiltonian can be found
elsewhere [72]. If one further applies a mean-field approximation to treat the two-
electron part of the atomic SOC Hamiltonian by assuming an atomic one-electron
density and adding the resulting mean-fields to the one-electron integrals, the so-
called atomic mean-field integral (AMFI) approximation is used [32]. Note that
alternative mean-field approximations of the SOC operator have been proposed by
Neese [60] and that the atomic approximation can nowadays be avoided even in
routine calculations.

The Treatment of the Spin-Orbit Free Electron Correlation

Although c-SOCI calculations can in principle be performed using single-reference
SOF states, this is not an optimal approach to compute ZFS since it is in most cases
impossible to converge enough excited SOF states to obtain a good representation
of the SOC operator. Therefore, it is more appropriate to use multireference SOF
states, which are obtained from multiconfigurational self-consistent field (MCSCF)
approaches. A second requirement to compute ZFS is that all the spin components of
the SOF state(s) of interest have to be coupled to excited components in a balanced
way, i.e., one should not introduce a bias in the treatment of the lowest-energy
spin-orbit states toward one specific spin-orbit component. This common-sense
requirement has two implications in practice; (i) the set of SOF states considered
in the first step of the calculation must be rather well thought, since selections based
on an energy basis do not always lead to a consistent choice, and (ii) it is convenient
to consider state-averaged (SA) orbitals between all the SOF states of interest to
control the balance between the SOC excitations that are introduced a posteriori.
Although SA orbitals can be calculated for any type of MCSCF multireference SOF
states, the appropriate calculation of physical properties requires ensuring some
properties of the wave functions, which may break down by any space truncation of
the CI space that is used for computing the SOF states. This is why most researchers
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consider the complete active space self-consistent field (CASSCF) method [73] in
the first step of a ZFS calculation.

Perhaps it is necessary at this stage to introduce the example of the nearly
octahedral d8 complexes to illustrate how one can consistently choose balanced
active spaces and balanced SOCI spaces, i.e., an adequate set of SOF states in
the first step of the calculation. If one only considers the d8 manifold, ten spin-
triplet (10T) and 15 spin-singlet (15S) SOF states can be at maximum consideration.
Therefore, the easiest way to define balanced spaces consists of choosing an active
space of eight electrons in five orbitals, i.e., a CAS(8/5), and in computing 10T and
15S SOF states with the state-averaged CASSCF (SA-CASSCF) method [71]. Note
that it is easier to guess which active spaces and which sets of states can be suitable
by looking at the reference, most symmetrical situation, i.e., in the octahedral case.
One can for instance think of adding the two orbitals associated to the ligand-to-
metal “¢” donation or to consider the ground SOF state plus a number of excited
states that are consistent with the orbital degeneracies in that symmetry point group
(“roots”), leading, for instance, to 4T, 7T, and 2S and 10T and 9S sets of SOF states
[44]. In any case, the degeneracy of the first three spin-orbit roots should be strictly
maintained in the octahedral situation. When the symmetry is lowered, which is
necessary to observe ZFS, one should maintain a balanced treatment of the SOC
operator. While it is clear that the active spaces that are consistent for the octahedral
situation are transferable to the case of nearly octahedral complexes, the definition
of the set of SOF states may be problematic. One can always recommend using the
full set of states that can be formed within an 8/5 active space (i.e., 10T and 15S)
or check that any of the previously mentioned subsets of it leads to similar averaged
occupation numbers for the orbitals from which excitations are formed, i.e., for the
three orbitals that correspond to the t2g orbitals in the octahedral case. A similar
reasoning can be applied to any d n configuration near an ideal geometry that leads
to orbitally nondegenerate ground states, as, for instance, in nearly tetrahedral d7

complexes. In this case, the “full” set of spin-orbit free states consists of ten spin-
quartet (10Q) and 40 spin-doublet (40D) SOF states, while it is also safe to consider
the 4Q and 7Q subsets [44].

Now that the set of SOF states has been defined, the SOC is computed between
the spin components (i.e., MS components) of these states to form the c-SOCI
matrix. However, one needs to further discuss the choice of the SOF electronic
energies that appear on the diagonal of the matrix. Since the spin components of
the SA-CASSCF SOF states are considered to compute the off-diagonal elements
of the c-SOCI matrix, it may appear natural to just consider the SA-CASSCF
electronic energies on the diagonal of this matrix. This straightforward choice
may however not be the wisest. In mononuclear complexes, satisfactory results
may be obtained at this level, although it is also clear that results are in general
slightly improved when the diagonal of the c-SOCI matrix is “dressed” with post-
CASSCF correlated energies [44]. In binuclear complexes, ZFS can be severely
underestimated if SA-CASSCF energies are considered on the diagonal elements
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of the c-SOCI matrix, as shown by Maurice et al. showed in a very detailed
study concerning the ZFS of the first excited spin-triplet block in copper acetate
monohydrate [50]. In this case, it was shown via a crystal-field model that the ZFS
of interest relates at second order of perturbation to the isotropic magnetic couplings
of the orbitally single-excited states. As shown by decades of experience, a proper
description of isotropic magnetic couplings is not trivial at post-CASSCF levels
[43]. Perturbative approaches such as the complete active space perturbation theory
at second order (CASPT2) [4] and the n-electron valence state perturbation theory
at second order (NEVPT2) [5] do not fully account for the effect of charge-transfer
configurations on the isotropic couplings. Although the description is clearly
improved compared to CASSCF, multireference configuration interaction (MRCI)
has to be considered for quantitative results. Among the different MRCI schemes,
the difference-dedicated configuration interaction (DDCI) methods [57] is one of
the most successful ones for computing isotropic couplings. This method considers
all the single and double excitations minus the double excitations that create two
holes (h) in the inactive orbitals and two particles (p) in the virtual orbitals,
usually referred to as the 2h2p excitations. Numerical examples will be given in
sections “Mononuclear Complexes” and “Binuclear Complexes” for mononuclear
and binuclear complexes, respectively, and the comparison with experimental data
will be discussed.

On the Effective Hamiltonian Theory

The effective Hamiltonian theory [8,18] enables one to establish a bi-univocal rela-
tion between a sophisticated Hamiltonian (here called the “reference” Hamiltonian)
expressed in a large reference space and an effective Hamiltonian working on a trun-
cated space, usually of much smaller dimension, that is called the “model” space. By
definition, the eigenfunctions of an effective Hamiltonian are the wave functions of
the reference Hamiltonian projected onto the model space, while its eigenvalues are
set to be identical to the energies of the reference Hamiltonian. Note that effective
Hamiltonians can be used to design computational approaches [14, 24, 79, 80].
Alternatively, effective Hamiltonians can be used to extract information from wave
functions and energies in order to determine the interactions of model Hamiltonians
(i.e., the model operators and parameters). By doing so, computational chemistry
can (i) assess the validity of the considered model Hamiltonian by checking that the
model space is appropriate (the norms of the projections onto the model space must
be large enough) and checking that the operators of the model Hamiltonian are the
relevant ones (a good one-to-one correspondence between the model Hamiltonian
and the effective Hamiltonian matrices must be obtained) and (ii) extract the model
parameter values. This approach proved to be particularly appropriate in the field of
ZFS for the second purpose, even if alternatives exist, as, for instance, the pseudo-
spin approach of Chiboratu and Ungur [15].
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Various formulations of effective Hamiltonians have been reported in the litera-
ture, among which the [8] and des Cloizeaux [18] ones that will be commented here.
The Bloch formulation of the effective Hamiltonian is defined as:

bHBloch D
X

k

j Q kiEkhS
�1 Q kj

where Q k and Ek are the kth projected eigenvector and eigenvalue of the refer-
ence Hamiltonian. The projected eigenvectors of the reference Hamiltonian are
mutually non-orthogonal, and S�1 is the inverse of the overlap matrix between
the projected eigenvectors. However, one should note that this formulation does
not ensure hermiticity of the effective Hamiltonian, which may be problematic for
extracting model parameter values. In order to get Hermitian model Hamiltonians,
the des Cloizeaux formalism, which symmetrically orthogonalizes the projected
eigenvectors (usually referred to as the Löwdin’s orthogonalization in quantum
chemistry), can be used. In this formalism, the effective Hamiltonian is defined as:

bH des Cloizeaux D
X

k

ˇ

ˇ

ˇS�
1
2 Q k

E

Ek

D

S�
1
2 Q k

ˇ

ˇ

ˇ

Examples of discussions on the validity of model Hamiltonians and extractions
of model parameter values are given in the next section.

Model Hamiltonians and Effective Hamiltonians

Model Hamiltonians not only reduces the complexity of a given refer-
ence Hamiltonian, the model space being always smaller than the reference
space, but also introduce effective parameters with a well-defined physical
meaning. In the field of molecular magnetism, the typical simpler Hamil-
tonians are the well-known phenomenological spin Hamiltonians, in which
no track of the orbital part of the wave functions is kept. Although the
earliest spin Hamiltonian is the Heisenberg-Dirac-van Vleck (HDV) [19,
29, 88] one (vide infra), the expression “spin Hamiltonian” was introduced
later by Abragam and Pryce [2] in the context of the electron paramagnetic
resonance (EPR) spectroscopy. In this part, we will show that (i) the effective
Hamiltonian theory can be used to project the information contained in c-SOCI
wave functions onto a model space consisting of the spin components of one (or
several) spin state(s), (ii) question the validity of model Hamiltonians and improve
them if necessary, and (iii) show that model parameter values in good agreement
with experiment can be obtained. We will start by discussing mononuclear
complexes prior to dealing with binuclear systems to gradually increase the
complexity of the models to be introduced. Note that a basic introduction to the
use of effective Hamiltonian theory in relation to model Hamiltonians can be found
in a recent textbook [17].
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Mononuclear Complexes

Mononuclear complexes with a d n electronic configuration can be split in two
groups, S D 1 or S D 3=2 systems and S D 2 or S D 5=2 systems, as the model
Hamiltonians that have to be used to describe the full complexity of their ZFS are
different. Note that, in a first approximation, the model Hamiltonian for S D 1 or
S D 3=2 systems can be used to describe S D 2 or S D 5=2 systems. Although this
is commonly done in the literature, this approximation may not always be adequate,
as will be discussed later. One should also stress that usually, in the S D 2 or
S D 5=2 systems, the SSC can contribute to a significant part of the total ZFS,
around 10 % of the total ZFS in manganese(III) complexes [21] and even up to 20 %
in manganese(II) complexes [90]. Therefore, one should account for the SSC in
the determination of ZFS parameters [61]. A remark is thus worth here. Both SOC
and SSC generate second-rank ZFS tensors, and, unless these axes are imposed
by symmetry, both effects may independently generate different magnetic axes.
Therefore, one should in principle not only perform a c-SOCI calculation but rather
diagonalize bH D Eel C bH SOC C bH SSC prior to applying the effective Hamiltonian
theory. This point is also valid for the S D 1 and S D 3=2 systems, although
bH SSC can be more safely neglected in these cases, especially in complexes for
which large ZFSs are observed. For mononuclear complexes, we compare computed
values to experimental ones when the SSC contribution to the ZFS can be neglected.
When this contribution is expected to play a more important contribution, we do not
compare to experiment but rather focus on the SOC contribution and on the validity
of the model Hamiltonians.

S D 1 and S D 3=2 Systems
For S D 1 and S D 3=2 systems, the model Hamiltonian which describes the ZFS
of orbitally nondegenerate states is simply [39]:

bHmod1 D OSD OS

where OS is the spin operator row or column vector and D the second-rank ZFS

tensor. D is symmetric and only composed of real numbers. Expanding this
Hamiltonian and applying it to the jS;MS i spin component basis allows one to
derive the analytical interaction matrix to be compared to the effective Hamiltonian
matrix. Although a similar reasoning can be used for S D 3=2 systems, we will
only discuss in details the S D 1 case. Note that the analytical interaction matrix
for S D 3=2 systems is available elsewhere [44]. The analytical interaction matrix
is given in Table 1 for S D 1. As mentioned earlier, the analytical interaction matrix
is Hermitian (see Table 1), as any other analytical interaction matrix that will be
discussed in this chapter.

The c-SOCI calculation delivers wave functions expressed in terms of the
spin components of a set of SOF states. To describe the ZFS of an S D 1

system with bHmod1, the c-SOCI eigenvectors have to be projected onto the
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Table 1 Analytical interaction matrix corresponding to the ZFS of S D 1 systems [44]. X , Y ,
and Z correspond to the Cartesian axes of an arbitrary axis frame

bHmod1 j1;� 1i j1;0i j1;1i

h1;�1j 1
2
.DXX CDYY /CDZZ �

p
2

2
.DXZ C iDYZ/

1
2
.DXX �DYY /C iDXY

h1; 0j �
p
2

2
.DXZ � iDYZ/ DXX CDYY

p
2

2
.DXZ C iDYZ/

h1; 1j 1
2
.DXX �DYY /C iDXY

p
2

2
.DXZ � iDYZ/

1
2
.DXX CDYY /CDZZ

Fig. 1 Ball-and-stick
representation of a model of
the [Ni(HIM2-Py)2NO3]C

complex and its main
magnetic axes [44]. The
“external” methyl groups
have been modelled by
hydrogen atoms; all hydrogen
atoms are omitted for clarity

spin components of a SOF state, typically the ground state. The norm of the
projection can be assessed by looking at the diagonal elements of the overlap
matrix between the projected eigenvectors (S in bHBloch or in bH des Cloizeaux/. If
the (ground) SOF state is well separated in energy from any other SOF state, the
norm of the projections is expected to be close to 1. Let us choose the exam-
ple of the [Ni(HIM2-Py)2NO3]C (HIM2-py = 2-(2-pyridyl)-4,4,5,5-tetramethyl-4,5-
dihydro-1H-imidazolyl-1-hydroxy) complex (see Fig. 1) [44].

The projected wave functions are obtained from the ab initio ones simply by
truncation, i.e. by only the part that concerns the spin components of the �0 ground
SOF states:
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Table 2 Effective interaction matrix corresponding to the ZFS of the [Ni(HIM2-Py)2NO3]C

complex [44]

bH des Cloizeaux j‰0;� 1i j‰0;0i j‰0;1i

h‰0;�1j 6.386 �0:690C i0:376 �3:734C i3:134

h‰0; 0j �0:690� i0:376 0.125 0:690� i:0376

h‰0; 1j �3:734� i3:134 0:690C i:0376 6.386

j Q‰1i D .0:045C i0:092/ j‰0;�1i � .0:668 � i0:724/ j‰0; 0i

C .0:096C i0:037/ j‰0; 1i

j Q‰2i D � .0:395 � i0:578/ j‰0;�1i C .0:062C i0088/ j‰0; 0i

� .0:096 � i0:173/ j‰0; 1i

j Q‰3i D .0:701C i0:026/ j‰0;�1i � .0:090C i0:037/ j‰0; 0i

� .0:519C i0:472/ j‰0; 1i

The norms of the projected vectors (prior to orthonormalization) are all larger
than 0.99, which perfectly legitimates the use of a spin Hamiltonian in this case.
However, prior to validating bHmod1, other tests are necessary: one must show that
(i) the effective and analytical interaction matrices match and (ii) how the extracted
tensor component values transform with respect to a change of the axis frame (i.e.,

that the extractedD actually transforms as a tensor). The effective interaction matrix
that is built with bH des Cloizeaux is represented in Table 2 (E1 D 0:00, E2 D 1:529

and E3 D 11:396, all energies being in cm�1).
By construction, the effective interaction matrix is Hermitian and has the same

eigenvalues as the reference Hamiltonian (bH ref D EelCbH SOC/, and its eigenvectors
Q‰1, Q‰2, and Q‰3 are identical to the projected ab initio eigenvectors up to a given
complex phase factor. By the term-by-term comparison of bHmod1 and bH des Cloizeaux,
it is immediately clear that both matrices perfectly match, meaning that bHmod1 is
suited to describe the ZFS in this system, as it turns out to be the case for any S D 1
system with an orbitally nondegenerate ground state. Therefore, the second-rank
ZFS tensor can be unambiguously extracted. Diagonalization of this tensor leads
to the determination of the magnetic axes Xm, Y m, and Zm, as well as the ZFS
parameters:

D D DZmZm �
1

2
.DXmXm CDYmY m/

E D
1

2
.DXmXm �DYmY m/

provided that conventions are applied, i.e., jDj > 3E and E > 0 (or, alternatively
E=D > 0). If one uses the transformation matrix P�1 that allows expressing
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D in the magnetic axis frame (such that Dm D P�1DP /, one can build again
bH des Cloizeaux after computing the c-SOCI solutions in this coordinate system and
show that the extracted tensor is diagonal and finally that the same ZFS parameters

can be extracted. Therefore, we conclude that D actually transforms as a second-
rank tensor and show that the model Hamiltonian bHmod1 is fully valid. In this
case, the extracted values for D and E are �10:60 and 0.76 cm�1, respectively,
[44] and compare well with the most accurate experimental values (�10:15 and
0.10 cm�1, respectively, from high-field and high-frequency EPR spectroscopy
[70]). Other nickel(II) complexes have been studied in a similar way, and a good
agreement between theory and experiment is generally observed with c-SOCI
[16, 44, 51, 75, 76], while density functional theory methods seem to fail for this
high-spin d8 configuration [41].

A similar reasoning can be applied to S D 3=2 complexes, such as nearly
tetrahedral cobalt(II) complexes. TheD andE parameters cannot be extracted from
the eigenvalues of any reference Hamiltonian, since one only has access to the
energy difference between the two Kramer’s doublets of interest. On the contrary,
the application of the effective Hamiltonian theory unambiguously allows extracting
the full ZFS tensor, i.e., determining the magnetic axes and the ZFS parameters.
As shown elsewhere [44], bHmod1 is indeed also perfectly suited to describe the
ZFS of S D 3=2 ground states. As an example of application, let us consider the
[Co(PPh3/2Cl2] (Ph = phenyl) complex (see Fig. 2) [44]. In this case, the extracted
ZFS parameter values are �14:86 and 0.54 cm�1 for D and E, respectively [44],
which also compares well to the experimental values of �14:76 and 1.14 cm�1,
respectively [40]. Also, note that the energy difference from the two Kramer’s
doublet of interest relates to the D and E parameters as follows:

�E D 2
p

D2 C 3E2

In both nickel(II) and cobalt(II) examples described above, the computational
methodology was based on SA-CASSCF calculations with quite large active spaces,
small sets of SOF states (4T and 7Q, respectively), and CASPT2 correlated energies
[44]. As a recommendation, one may note that enlarging the set of SOF states does
not systematically improve the results: on the one hand, more SOC excitations are
accounted for, and on the other hand, averaging artifacts are introduced, which may
result, for instance, in a poor orbital set for describing the ground state. Therefore,
one should make the compromise of describing as best as possible the stronger SOC
interactions, i.e., the balance between the number of possible excitations and the
accurate description of the involved states. As a conclusion concerning the ab initio
methodology, one may say that c-SOCI methods do not constitute a “black-box
machinery” to compute ZFSs.

S D 2 and S D 5=2 Systems
For S D 2 and S D 5=2 complexes, additional operators must be introduced in the
model Hamiltonian to achieve a complete description of the ZFS:
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Fig. 2 Ball-and-stick
representation of the
[Co(PPh3/2Cl2] complex and
its main magnetic axes [44].
All the hydrogen atoms are
omitted for clarity

bHmod2 D OSD OS C

4
X

qD�4

B
q
4
bO
q
4

where q may be odd and where the bOq
4 operators are extended Stevens operators

[1, 3, 77, 81]. This Hamiltonian is valid in any arbitrary axis frame for S D 2 and
S D 5=2 complexes. When the ground SOF state is well separated in energy from
the excited states, the fourth-rank spin bOq

4 operators have a very small effect on
the effective interactions of the model bHmod1. Therefore, one can first find the main
anisotropy axes by extracting D from the comparison of the effective interaction
matrix and the analytical one that is obtained with bHmod1 and then compute the
effective interaction matrix in this frame after a second c-SOCI calculation. In this
case, the model Hamiltonian reduces to:

bHmod3 D

4
X

nD0

4
X

kD2

Bn
k
bOn
k

where k and n must be even and the bOn
k operators are standard Stevens operators.

Note that B0
2 D D=3 and that B2

2 D E, i.e., B0
2 is a second-rank axial ZFS

parameter, while B2
2 is a rhombic one. As shown elsewhere, this two-step procedure

leads to the unambiguous extraction of the main magnetic axes and of the five
Bn
k parameters (B0

2 , B2
2 , B0

4 , B2
4 , and B4

4 / [45]. Indeed, in the magnetic axis
frame, the effective interaction matrix is in almost perfect correspondence with the
analytical one derived for bHmod3 with only some negligible deviations, typically
not larger than 0.01 cm�1. These deviations can be considered as numerical noise
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and do not significantly alter the extracted Bn
k values. Note that if one wants

to neglect the Bn
4 parameters, i.e., introduce only second-rank spin operators in

the model Hamiltonian, as in bHmod1, it is important to check a priori that the
k D 4 terms are not important to insure that the model and effective interaction
matrices match. As will be discussed in section “Magneto-Structural Correlations
Based on Crystal-Field Models and Ab Initio Calculations”, the fourth-rank Stevens
parameters relate to the near-degeneracy of spin components of different SOF states.
Therefore, one should not neglect them in such situations, as, for instance, in nearly
octahedral manganese(III) complexes [45]. Note that, however, the Jahn-Teller
effect tends to largely remove the near-degeneracy between the two lowest orbital
configurations in this case, which explains, for instance, why the Bn

4 parameters
are not crucial to describe the ZFS in the [”-Mn(acac)3] (acac = acetylacetonato)
complex (see Fig. 3) [49], for which the first coordination sphere is tetragonally
elongated.

In many cases of experimental interest, bHmod1 is perfectly suited to describe the
ZFS of S D 2 and S D 5=2 complexes.

Binuclear Complexes

Prior to introducing the model Hamiltonians that can be used to describe the ZFS
in binuclear complexes, it is worth introducing the HDV Hamiltonian [19, 29, 88],

Fig. 3 Ball-and-stick
representation of the
[”-Mn(acac)3] complex and
its main magnetic axes [49].
All the hydrogen atoms are
omitted for clarity
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which may be expressed in a “multispin” picture, i.e., by considering local spin
operators that are to be applied within the basis of local spin components, i.e., within
the uncoupled spin basis:

bH
uncoupled
HDV D J OSa � OSb

where J is the isotropic coupling constant and OSa and OSb are spin operator column
vectors. Note that various expressions coexist in the literature, depending on a factor
that is applied to this Hamiltonian (here 1, but one may find �1 or more often �2).
It can easily be shown that bHmod1 can be also written in terms of spin operators that
lead to a diagonal analytical interaction matrix if one works within the basis of spin
eigenfunctions, i.e., within the coupled spin basis:

bH
coupled
HDV D

J

2

X

S

. OS2 � OS2a �
OS2b /

where S ranges between jSa � Sbj and Sa C Sb , OS is the spin operator associated
to each coupled spin state, and Sa and Sb are the local spins on the a and b

sites. Therefore, it is clear that bHHDV splits the coupled spin states, which may
further be the subject of ZFS and mixings when anisotropic effective interactions
are considered in the model Hamiltonian. Such ZFSs and “spin mixings” can be
effectively described in two different ways that work in the coupled and uncoupled
basis, respectively, and which are classified as “giant-spin” or “block-spin” models
and “multispin” ones.

Giant-Spin and Block-Spin Hamiltonians
If the isotropic coupling constantly plays a much more important role on the
effective interaction matrix than the spin mixings, which is usually referred to as the
“strong-exchange limit” [9], very simple models can be used to describe the low-
energy spectrum. If only one spin “block” has to be described and that its magnetic
axis frame is considered, one can use a very simple giant-spin Hamiltonian that is
similar to bHmod3:

bH
coupled
giant spin D

k
X

nD0

x
X

kD2

Bn
k
OOn
k

where x D 2S if S is even or x D 2S � 1 if S is odd and k and n are even.
The simplest case is the ZFS of an S D 1 spin state resulting from the coupling

of two local spins Sa D Sb D 1=2. One typical example of such a situation is copper
acetate monohydrate (see Fig. 4) [50].

In this system, it is crucial to account for both SOC and SSC to compute the ZFS
of the excited 3A1u SOF state. As shown by Maurice et al. [50], the treatment of
SOC requires a special attention to the correlated energies appearing on the diagonal
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Fig. 4 Ball-and-stick
representation of copper
acetate monohydrate [50]

elements of the bH D Eel C bH SOC C bH SSC matrix (see Table 3). The reference
wave functions were obtained with SA-CASSCF(18/10) calculations (see [50] for
more details). As can be seen in Table 3, second-order perturbation theory does
not describe sufficiently well the SOF excitation energies, as well as variational
approaches with limited configuration interaction spaces (the DDCI1 calculations
include in this case only the 1h and 1p excitations, while the DDCI2 ones also
account for the 1h1p, 2h, and 2p excitations). Although the DCCI2 level appears
to lead to an almost converged value of D when only bH SOC is considered, it is
essentially due to error cancellations (more details are given on this in [50]). The
best value, obtained with the DDCI3 energies, is in exceptional agreement with
experiment (Dexpt: D �0:335 cm�1 [65]). The rhombic E parameter value is very
small, 0.006 cm�1 with the DDCI3 energies (in good agreement with Eexpt: D

0:01 cm�1), and will not be discussed in details here.
One should stress that in this particular case, i.e. the d9–d9 configuration,

computing the ZFS of the triplet block happened to be particularly challenging, but
it may not be the case for other configurations. Another system that has been stud-
ied within the giant-spin approach is the [Ni2(en)4Cl2]2C (en = ethylenediamine)
complex (see Fig. 5) [46, 47]. Although this system does not fall within the strong-
exchange limit, it is possible to build two effective Hamiltonians in the basis of
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Table 3 Computed axial ZFS D parameters as a function of the correlated energies used on the
diagonal of the contracted configuration interaction matrices and of the operators introduced in the
Hamiltonian [50]

Eel bH SOC bH SSC bH SOC C bH SSC

SA-CASSCF �0.017 �0.118 �0.137

NEVPT2 �0.026 �0.118 �0.144

DDCI1 0.005 �0.118 �0.115

DDCI2 �0.172 �0.118 �0.291

DDCI3 �0.200 �0.118 �0.319

Fig. 5 Ball-and-stick
representation of the
[Ni2(en)4Cl2]2C complex and
its S = 2 block main magnetic
axes. All the hydrogen atoms
are omitted for clarity

the spin components of the S D 2, S D 1, and S D 0 spin components, one
in which spin mixings are set to zero and one in which these spin mixings are
allowed [47, 49]. From this theoretical study, it was shown that, in the magnetic
axis frame, bH coupled

giantspin can describe the ZFS of both the S D 2 and S D 1

blocks in the absence of spin mixing and that the spin mixings can be described
using additional operators [47] (in this case, due to a symmetry center, the spin
mixings concern the S D 0 and some S D 2 spin components). In other words,
one can define a block spin Hamiltonian which describes the isotropic coupling
and the ZFSs of the different blocks in the absence of spin mixing, and the spin-
mixing effects can actually be introduced inside the different spin blocks, i.e.,
one can use a block-diagonal analytical interaction matrix to describe the entire
low-energy spectrum [49]. The comparison with experimental data is complicated
since all the studies reported so far neglected some, and usually different, effective
interactions in the model Hamiltonians [27, 30, 37, 38]. One can just mention that
the best computed value for D2, i.e., the axial ZFS parameter of the S D 2 block,
is in good semiquantitative agreement with the experimental one [30] (�3.0 vs.–
1.8 cm�1, respectively).
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Table 4 Analytical interaction matrix corresponding to bH uncoupled
multispin when Sa D Sb D 1=2 [48]. A

shortened notation jMSa ;MSb i is used for the jSb;MSa ; Sb;MSb i uncoupled functions. X , Y , and
Z correspond to the Cartesian axes of an arbitrary axis frame

bH
uncoupled
multispin j�1=2;� 1=2i j�1=2;1=2i j1=2;� 1=2i j1=2;1=2i

h�1=2;�1=2j 1
4
.J C TZZ/ � 1

4
.TZX C iTZY / �

1
4
.TXZ C iTYZ/

1
4
ŒTXX � TY Y

Ci .TXY C TYX/�

h�1=2; 1=2j � 1
4
.TZX � iTZY / �

1
4
.J C TZZ/

1
4
Œ2J C TXX C TY Y

1
4
.TXZ C iTYZ/

Ci .TYX � TXY /�

h1=2;�1=2j � 1
4
.TXZ � iTYZ/

1
4
Œ2J C TXX C TY Y �

1
4
.J C TZZ/

1
4
.TZX C iTZY /

�i .TYX � TXY /�

h1=2; 1=2j 1
4
ŒTXX � TY Y

1
4
.TXZ � iTYZ/

1
4
.TZX � iTZY /

1
4
.J C Tzz/

�i .TXY C TYX/�

Another study of the d8–d8 configuration, related to the strong-exchange limit,
concerned model complexes [74]. It was shown that, contrary to what is often
proposed, no simple relations appear between the ZFS parameters of the S D 2

and S D 1 blocks, which can also be analyzed within a multispin picture (vide
infra). Also, it is clear that giant-spin and block-spin Hamiltonians may not be
relevant in the weak-exchange limit, i.e., when J becomes negligible, since spin
mixings cannot be considered as a perturbation in such a case. In principle, one
should in this case consider a multispin model, the extraction of which is far from
being straightforward, as will be shown later.

Multispin Hamiltonians
As in section “Mononuclear Complexes”, we will introduce progressively the
complexity of the multispin Hamiltonian in binuclear complexes. Let us start with
the easiest case of two coupled S D 1=2 centers, as in the d9–d9 configurations,
for instance. The model Hamiltonian which is commonly used includes an isotropic
coupling terms (bHHDV) plus an anisotropy tensor [39]:

bH
uncoupled
multispin.SaDSbD1=2/

D J OSa � OSb C OSaT ab OSb D J OSa � OSb C OSaDab
OSb C Ndab OSa � OSb

where T ab is a second-rank tensor that is neither symmetric nor antisymmetric

in the general case, Dab is the symmetric anisotropy exchange tensor, and Ndab
is the Dzyaloshinskii-Moriya term [22, 58] that can also be referred to as the

antisymmetric exchange pseudo-vector. As mentioned earlier, computing Dab may
turn into a real nightmare [50], but the semiquantitative determination of Ndab is much
less demanding, since it can be obtained from CASSCF(2/2) + c-SOCI calculations
[48,67]. The analytical interaction matrix built in the uncoupled basis is represented
in Table 4.

One can also express this analytical interaction matrix with the Dab tensor and
the Ndab pseudo-vector by using the Dii D Tii , Dij D 1=2.Tij C Tji /, dX D
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1=2.TYZ � TZY /, dY D 1=2.TZX � TXZ/, and dZ D 1=2.TXY � TYX/ relations
[48]. The analytical interaction matrix can be transformed into the coupled basis as
follows:

bH
coupled
multispin D U

T
bH

uncoupled
multispin U

where UT is the transpose of the change of basis matrix U . The matrix elements of
U are given by the appropriate Clebsch-Gordan coefficients [9]. When bHmultispin is

expressed in the coupled basis, the Dab tensor relates to the splitting and mixing of
the S D 1 block (i.e., its ZFS in the strong-exchange limit), while the Ndab pseudo-
vector introduces spin mixings between the S D 1 spin components and the S D 0
one. This type of S/S+1 spin mixing is not always symmetry allowed (the symmetry
rules are available elsewhere [12]). One may just recall that if the system contains a
symmetry center, as it is the case for copper acetate monohydrate, the Ndab pseudo-
vector is null [58]. Therefore, in this system, as in any other d9–d9 binuclear system,

a simple relation appears between D1 and Dab [50]:

D1 D
1

2
Dab

By studying model copper(II)-copper(II) complexes, Maurice et al. showed that
bHmultispin is perfectly valid to describe the isotropic coupling and the ZFSs when
Sa D Sb D 1=2 [48]. Owing to the effective Hamiltonian theory, all the model
parameter values can be theoretically extracted, while it appears complicated to
properly distinguish between the symmetric and antisymmetric exchange terms
from the outcomes of experiments. Moreover, since one can obtain good semiquanti-
tative estimates of the Ndab pseudo-vector components from CASSCF(2/2) + c-SOCI
calculations [48, 67], antisymmetric exchange is essentially due to the direct SOC
between the S D 1 and S D 0 spin components.

When Sa D 1 and Sb D 1=2, another term must be added to the phenomenolog-
ical model Hamiltonian, related to the single-ion anisotropy of site a [39]:

bH
uncoupled
multispin.SaD1;SbD1=2/

D J OSa � OSb C OSaDa
OSa C OSaDab

OSb C Ndab OSa � OSb

In this case, both the Da and Dab symmetric tensors affect the S D 3=2 block,
while Ndab relates to the S=SC 1 spin mixings, as usual.

The situation is drastically complicated when considering the Sa D Sb D 1 case,
e.g. nickel(II)-nickel(II) complexes. The following model Hamiltonian was used for
decades to interpret experimental data [27, 30, 37, 38]:

bH
uncoupled
multispin.SaDSbD1/

D J OSa � OSb C OSaDa
OSa C OSbDb

OSb C OSaDab
OSb C Ndab OSa � OSb
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The validity of this model Hamiltonian was assessed by c-SOCI calculations
and the effective Hamiltonian theory in 2010 by Maurice et al. [46]. It was
shown that many terms of the effective interaction matrix which were obtained
for the [Ni2(en)4Cl2]2C complex were not associated to any model parameter in
the analytical interaction matrix. In order to reproduce all features of the effective
Hamiltonian matrix, one must actually introduce a symmetric fourth-rank exchange
tensor,Daabb, in the model Hamiltonian, leading to:

bH
uncoupled
multispin.SaDSbD1/

D J OSa � OSb C OSaDa
OSa C OSbDb

OSb C OSaDab
OSb

C OSa ˝ OSaDaabb OSb ˝ OSb

if Ndab is null. The extraction of the Daabb components is not straightforward even
with all information contained in the 9 � 9 effective interaction matrix; one should
thus consider relations between these components, as done in a study of model
complexes [74]. One should thus stress that the spin mixings between the S D 2

and S D 0 spin components, mentioned in section “Giant-Spin and Block-Spin
Hamiltonians”, can be interpreted in terms of the parameters of the multispin
Hamiltonian after transforming the analytical interaction matrix to the coupled

basis: these terms actually relate to all symmetric tensors of bHmultispin, i.e., Da,

Db , Dab , andDaabb [47].
Another interesting point which is worth mentioning here is that one may

be interested in computing only the local anisotropy tensors, i.e., Da and Db .
Various strategies exist; (i) one may replace one of the two magnetic centers by
a model potential [46] or by a diamagnetic ion [11, 46, 53], (ii) one may also
consider its lowest-energy closed-shell configuration [74], and (iii) another method
considers local excitations while keeping the other site in its lowest-energy open-
shell configuration [69]. This last strategy is meant to be the most accurate approach.
From the study of model complexes, it was shown that the local anisotropy
parameters that can be obtained in these various ways are in very close agreement
with those obtained from the extraction of the interactions of bHmultispin [74]. In
conclusion, if one wants to estimate local anisotropy parameters or local magnetic
axes, these approaches can be safely considered. It is also worth mentioning here
that in the general case, the S=S C 1 spin mixings do not arise solely from Ndab:

the mismatch between the local magnetic axes of the local Da and Db tensors also
affects the effective couplings related to these mixings. This can be easily shown
by considering Da D Db ¤ 0, Ea D Eb D 0, and an angle 2˛ between coplanar
local Zm

a;b axes. If one builds the corresponding model interaction matrix within the
uncoupled basis and transforms it to the coupled one, the S=S C 1 spin-mixing
terms are found proportional toDa sin 2’ (the details of the derivation are not given
here for a sake of simplicity). It is thus clear that these terms vanish for ’ D 0, as it
is the case for centrosymmetric complexes. Therefore, the local anisotropy tensors
can be affected in the general case by the S=S C 2 and to S=S C 1 spin mixings.
Furthermore, note that one should also never neglect these terms within the weak-
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exchange limit, contrary to what was done, for instance, to interpret the low-energy
spectrum of a cobalt(II)-cobalt(II) complex [64]. From the perspective of modeling,
it is not clear yet whether the model Hamiltonian used for the Sa D Sb D 1 case
is directly applicable to any other configuration. Actually, higher-rank tensors could
be necessary to reproduce all ZFS features for higher local spins [54], such as, for
Instance, a sixth-rank tensor in the Sa D Sb D 3=2 case.

Magneto-Structural Correlations

Magneto-structural correlations are particularly useful for chemists as they give
clues to tune the properties of a system and pave the way for the rational design
of new magnetic systems with predetermined properties. In the field of ZFS,
they can be established from correlations of molecular geometry features with
the experimental values of the parameters, as was done by Titiš and Boča in
nickel(II) and cobalt(II) mononuclear complexes [84,85]. Here, we will only discuss
magneto-structural correlations deduced from the analysis of ab initio results or
from combined ab initio/crystal-field studies.

Magneto-Structural Correlations Based on Ab Initio Calculations

Due to the lack of intuition on the role of distortions on the Ndab pseudo-vector
components, Maurice et al. studied the effects of two angular distortions on the
DM vector components on model [Cu2O(H2O)6]2C complexes (see Fig. 6) [48].
This study was based on CASSCF(2/2) + c-SOCI calculations and made use of the
effective Hamiltonian theory, as mentioned in section “Multispin Hamiltonians”.

The norm of the Ndab pseudo-vector as a function of the #1 and #2 deformation
angles is represented in Fig. 7.

2

C2

y

x
z

1

y

x
z

Fig. 6 Ball-and-stick representation of model [Cu2O(H2O)6]2C complexes and the deformation
angles that were applied to them [48]. All the hydrogen atoms are omitted for clarity
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Fig. 7 Norm of the Ndab pseudo-vector as a function of the #1 and #2 deformation angles (see
Fig. 6 for the definition of these angles) [48]

In this study, the only point for which the Ndab pseudo-vector is null by symmetry
corresponds to the ª1 D ª2 D 0 case, for which the system possesses a symmetry
center. Another interesting point refers to #1 D  =2 and ª2 D 0. In this case, there is
no atomic orbital contribution from the copper(II) centers, and as a consequence, the
only important contribution to this norm comes from the bridging oxygen center. As
the Ndab pseudo-vector is far from being null, in this case (j Ndabj D 3:6 cm�1 [48]) the
(essentially) closed-shell bridging oxygen contributes to the norm of the Ndab pseudo-
vector, as highlighted by Moskvin in 2007 [59]. Other studies concerning single-ion
anisotropies exist in the literature, among which one may quote the extensive one
of Gomez-Coca et al. [28], but these will not be discussed here. Instead, we will
explore the cases of mononuclear complexes for which ab initio calculations are
used to extract crystal-field parameters.

Magneto-Structural Correlations Based on Crystal-Field Models and
Ab Initio Calculations

Joint ab initio and crystal-field studies are important to validate the equations
derived from the crystal-field theory and to interpret the outcomes of experiments
in a simple way. It is commonly practiced on mononuclear complexes, although
equations can also be derived in binuclear complexes, as was done, for instance, in
the case of copper acetate monohydrate [50]. In this section, we shall illustrate the
procedure for the d8 and d4 configurations, using ab initio calculations on nearly
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octahedral [Ni(NCH)6]2C and [Mn(NCH)6]3C model complexes. In both cases, we
define the axial deformation parameter as:

�ax D
2d.TM;NZ/

d .TM;NX/C d.TM;NY /

and the rhombic deformation as:

�rh D
d.TM;NY /

d .TM;NX/

The mean d (TM,N) distance is 2.054 Å and 2.061 Å for TM = Ni [49] and
TM = Mn [45], respectively, while all d (TM,C) parameters are fixed to 1.155 Å
and all the d (C,H) ones to 1.083 Å. Minimal CASSCF calculations have been
carried out with the five d-orbitals and 8 (Ni) or 5 (Mn) electrons within the active
space. Note that in the formulae that are presented here, monoelectronic — SOC
constants are considered. These constants are always positive and can be converted
into polyelectronic œ ones by using the following relation:

œ D ˙
—

2S

where S is the total spin of the ground SOF free-ion multiplet.
It is easy to show, as done in the textbook of Abragam and Bleaney [1], that for

axially distorted systems:

D D �
—2

�1

C
—2

�2

where �1 is the 3B1g !
3B2g excitation energy and �2 corresponds to the

3B1g !
3Eg excitation energy. The derivation of this equation is based on a model

space containing the spin components of the ground SOF 3B1g state, while the
external space consists of the spin components of the lowest two excited SOF states,
namely, 3B2g and 3Eg, which are essentially singly excited states with respect to
3B1g. To check the correlation between the ab initio results and the outcomes of the
crystal-field model, we substitute the ab initio �1 and �2 values in the expression
for D and take the SOC constant of the free Ni2C ion, 648 cm�1 (see Table 5).
As can be seen, a good correlation appears between the ab initio and the crystal-
field D values (DCF /: the trend line that passes through the origin, as forced by
symmetry, leads to DCF D 1:32D with R2 D 0:9969. This shows that accounting
for covalency effects by applying a reduction factor of 0.87 brings the DCF values
in perfect agreement with the ab initio ones along the whole curve. Therefore, the
crystal-field formula presented above is fully supported by c-SOCI calculations that
consider the spin components of four SOF triplet states. Note that considering more
SOF states in the first step of the calculation does not significantly improve the
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Table 5 Ab initio �1, �2,
and D values and values of D
derived from the crystal-field
expression (DCF/ obtained
with — D 648 cm�1 (all
values are in cm�1/ [49]

�ax �1 �2 D DCF

0:957 8382:4 9692:5 �5:519 �6:855

0:971 8669:7 9559:4 �3:568 �4:564

0:985 8964:0 9416:5 �1:736 �2:279

1:000 9266:9 9266:9 0:000 0:000

1:015 9576:9 9110:8 1:659 2:271

1:029 9895:8 8951:8 3:259 4:530

1:044 10;224:0 8791:1 4:814 6:778

computed values, meaning that this formula explains most of the ZFS in axially
distorted six-coordinated nickel(II) complexes.

In a similar way, one can introduce a rhombic distortion, i.e., an in-plane radial
distortion. The crystal-field derivation leads to:

D D �
—2

�1

C
—2

2�2

C
—2

2�3

and:

E D �
—2

2�2

C
—2

2�3

where �1 correlates with the 3B1g !
3B2g energy difference in the D4h symmetry

point group and where�2 and�3 both correlate with the energy of the 3B1g !
3Eg

excitation in the same symmetry point group [49]. Similarly, it can be shown that
these formulae are supported by ab initio calculations [49], corroborating that the
outcomes of model complex studies which aim at establishing magneto-structural
correlation can be safely explained by crystal-field models.

Before presenting the example of nearly octahedral manganese(III) complexes,
it is worth mentioning that such derivations are only valid close to ideal geometries
of high symmetry, since it is assumed that the ground and excited SOF wave
functions are either (i) not much affected by the distortion or (ii) affected in a
way that can be easily modeled. In general, it is always advisable to perform
ab initio calculations and to analyze the nature of the SOF wave functions of
interest. For instance, large angular distortions usually result in a mixing of various
configurations in such a complex way that pen-and-paper analytical derivations
become cumbersome. Moreover, even if analytical derivations can be performed,
if the resulting formulae are too complicated, they become pointless in practice for
establishing or understanding magneto-structural correlations. In such cases, it is
preferable to directly establish the correlations by means of ab initio calculations,
as presented in section “Magneto-Structural Correlations Based on Ab Initio
Calculations”.

Another interesting point concerns the role of the second coordination sphere.
Although this effect is traditionally neglected in crystal-field models, it was shown
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Table 6 Analytical crystal-field expressions of the energies, ab initio, and derived crystal-field
energies (in cm�1/ [45]. For the computation of the crystal-field energies, the free-ion SOC of
352 cm�1 and ab initio SOF excitation energies of �Q D 13;993 cm�1 and �T D 11;005 cm�1

have been used

Multiplicity Eanalytical Eab initio ECF

Singlet 2
4�Q—2C3�T —2

8�Q�T
16:813 17:900

Triplet 4�Q—2C3�T —2

8�Q�T
8:399 8:950

Doublet 0 0:000 0:000

Triplet �
4�Q—2C3�T —2

8�Q�T
�8:890 �8:950

Singlet � 2
4�Q—2C3�T —2

8�Q�T
�17:775 �17:900

by means of ab initio calculations that the second coordination sphere can play a
crucial role on the single-ion anisotropy in some particular cases [11, 51].

Nearly octahedral manganese(III) complexes, corresponding to the d4 configu-
ration, are particularly interesting as they present nonintuitive ZFSs [45]. Although
formulae which rationalize the ZFS of such systems are presented in the book of
Abragam and Bleaney [1], this case is often misinterpreted. Ab initio calculations
showed that the external space cannot be restricted to quintet-spin SOF state
components. Indeed, three triplet-spin roots must also be included in the derivation
to obtain accurate crystal-field formulae for this configuration [45]. The use of
these newly derived expressions leads to the energies of the ten spin components
of the SOF 5E state reported in Table 6. Note that the same wave functions as those
obtained by Abragam and Bleaney with five quintet roots were obtained [1]. The
trend line ECF D 1:034Eab initio has an R2 value of 0.9992, meaning that (i) the
crystal-field formulae presented in Table 6 are valid and (ii) a reduced effective
SOC constant of 346 cm�1 has to be used in the crystal-field model to effectively
account for covalency.

Similarly to the nickel(II) case, one can derive formulae for the D and E

parameters of Mn(III) complexes which belong to the D4h and D2h symmetry point
groups. In this case, analytical formulae can also be written down for the parameters
appearing in the Stevens fourth-rank operators. However, as shown in [45], one can
consider various approximations, i.e., neglecting (i) the Stevens fourth-rank terms
(large distortions) and (ii) the degeneracy lift of the excited SOF multiplets of the
octahedral situation (3T1g and 5T2g/. For the former approximation, one should note
that in the case of small distortions, the Stevens fourth-rank terms can be important
as they are closely related to the near-degeneracy of the states that originate from
the 5Eg of the octahedron [45]. In theD2h symmetry point group, two configurations
mix to form the two lowest SOF states [1]. It is therefore necessary to introduce a
mixing parameter ı to express these states as:

j�1i D cos ıjQ1i C sin ıjQ2i
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and:

j�2i D � sin ıjQ1i C cos ıjQ2i

where Q1 and Q2 are the two coupled configurations. This leads, after some pen-
and-paper work, to [45]:

D D �2 cos 2ı

�

3

16�Q
C

1

4�T

�

and:

E D �2jsin 2ıj

�

3

16�Q
C

1

4�T

�

where E is defined positive by convention. The careful reader will notice that, as in
the octahedral situation, the contribution of the triplet roots which were added in this
derivation is proportional to the effect of the quintet roots that correlate with 5T2g in
the octahedron. Finally, we end up with the same formula as the one reported in the
book of Abragam and Bleaney [1]:

E

jDj
D

p
3

3
jtan 2ıj

To conclude, one should mention that the anisotropy parameters are not enlarged
by distorting the first coordination sphere in this configuration, as illustrated by
Fig. 8 in the case of axial distortions. The ZFS of complexes belonging to this
configuration is nonintuitive, and the combined ab initio and crystal-field model
study has proved to be enlightening for experimental applications. Indeed, in this
configuration, it is pointless to synthesize complexes with large distortions to
enlarge the ZFS parameters, which is notably consistent with the empirical fact that
d4 complexes typically have axial ZFS parameter values ranging between �5 and
5 cm�1 [10].

Conclusion

In this chapter, we have shown that phenomenological Hamiltonians can be justified
or even improved using the effective Hamiltonian theory; this creates a bridge
between (supposedly) accurate ab initio calculations and intuitive models. We have
also exemplified how the crystal-field theory can be used to rationalize the nature
and magnitude of ZFS. These tools allow us to take another step in the direction
of the control of magnetic properties as they provide concrete understanding of
how to increase the magnetic anisotropy. Magneto-structural correlations have also
been established, which may help to design molecules with desired properties. To
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Fig. 8 Ab initio D parameter as a function of the axial distortion in model D4h manganese(III)
complexes [45]

maximize single-ion anisotropies, researchers followed strategies such as exploring
exotic coordination spheres (for instance, pentacoordinate or heptacoordinate com-
plexes) and even low-coordination spheres. Several efforts have been devoted to
binuclear and polynuclear systems, more often concerning single-ion anisotropies
but also concerning giant-spin and multispin models. Consequently, substantial
progress has been made in the understanding of the magnitude and nature of the
magnetic anisotropy in TM complexes with a wide range of ZFS parameter values
over the last two decades.

Nevertheless, many aspects deserve further studies. For instance, the treatment
of large systems is still problematic as (i) it is not clear which method can be
used to obtain an optimal balance between accuracy and efficiency and (ii) current
models to describe polynuclear complexes may not be complete. Indeed, even in
the case of mononuclear complexes, some cases are typically pathological, e.g.,
when heavy atom ligands are involved. In this situation, it is not clear yet if sum-
over-states or c-SOCI approaches can be safely applied to the computation of the
ZFS due to the truncation and state-averaging errors [49]. One may thus prefer to
introduce the spin-dependent effects a priori, as done within 2c frameworks. Also,
some experimental data may have been incorrectly interpreted due to the use of
inadequate models to fit the experimental outcomes of various techniques (magnetic
susceptibility, magnetization, EPR, etc.). Therefore, there is clearly a need for more
extensive studies and developments in the field of molecular magnetism. We hope
that this chapter will motivate future work of this kind.
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